TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous

Payment Hub

o ‘
Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi,

Alessandra Scafuro, Sharon Goldberg

- ; P BOSTON
2 ~ Scaling Bitcoin Milan 2016 UNIVERSITY

Introduction

TumbleBit is:

5 Y

Private: Unlinkable Bitcoin payments and k-anonymous mixing,
Untrusted: No one including Tumbler can steal or link payments.
Scalable (payment hub): scales transaction velocity and volume.
Compatible: Works with today's Bitcoin protocol.

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

Two ways to use TumbleBit:

TumbleBit can be used as a classic Bitcoin tumbler:
® k-anonymity within a mix,
® 4 transactions confirmed in 2 blocks (~¥20mins)

When TumbleBit is used as a payment hub:
e Unlinkability within the payment phase,
® Payments confirmed in seconds,
® Payments are off-blockchain,

... don’t take up space on the blockchain.

Introduction

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,

2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

Two ways to use TumbleBit:

When used as a payment hub, TumbleBit helps scale
- Bitcoin’s transaction velocity (faster payments),
and transaction volume (higher maximum payments).

When TumbleBit is used as a payment hub:
e Unlinkability within the payment phase,
® Payments confirmed in seconds,
® Payments are off-blockchain,

... don’t take up space on the blockchain.

Background: Payment Hub

A payment hub: routes payment channels.

Unidirectional Payment Channel
Alice — Payment Hub

Unidirectional Payment Channel
Payment Hub — Bob

Transaction: Escrowl Transaction: Escrow?2
Output Script: 2-of-2 multisig Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub Must be signed by Payment Hub and Bob
Refunded to Alice: after 1 month Refunded to Payment Hub: after 1 month

Transaction Transaction
D Escrowl @ Escrow?

Transaction Transaction

0'1 Claim1 Claim?2

I Alice signs Claim1 I Payment Hub signs Claim2 I

paying 1 Bitcoin from Alice to Bob via the Payment Hub.

Payment Hub and Bob could sign and post both claim transactions, ‘

Background: Payment Hub

A payment hub: routes payment channels.

Unidirectional Payment Channel
Alice — Payment Hub

Transaction: Escrowl
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Transaction
®) Escrowl

Transaction
1 Claim1

o o

1

Unidirectional Payment Channel
Payment Hub — Bob

Transaction: Escrow?2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction
@ Escrow?

y Transaction
Claim2

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?

Background: Payment Hub

A payment hub: routes payment channels.

Unidirectional Payment Channel
Alice — Payment Hub

Unidirectional Payment Channel
Payment Hub — Bob

Transaction: Escrowl
Output Script: 2-of-2 multisig

Must be signed by Alice and Payment Hub

Refunded to Alice: after 1 month

Transaction
B Escrowl

Transaction

O.1 Claim1

o

1

Transaction: Escrow?2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction
@ Escrow2

v, Transaction

Claim2
&)

...But what if the hub is malicious,

[Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

[Hash locks provide this property. }

Background: Payment Hub

A payment hub: routes payment channels.

‘ Unidirectional Payment Channel

Alice — Payment Hub

Transaction: Escrowl

Output Script: 2-of-2 multisig

Must be signed by Alice and Payment Hub

Refunded to Alice: after 1 month

>

Transaction
B Escrowl

Transaction X

0'1 Claim1 0'1 ’

H(X) = Y?

Unidirectional Payment Channel
Payment Hub — Bob

Bob, the value of x is....

Transaction: Escrow2

Output Script: 2-of-2 multisig
Must be signccs Bimaac Bob

| don’t know X, so...
| can’t spend Claim2.
Alice, learn x to pay me.

Transaction
@ Escrow2

Transaction
Claim2

< HX)=Y? B

-

Thus, using hash locked transactions or HTLCs a payment hub can prevent theft,
however this is provides no privacy against the payment hub.

L

)

Background: HTLC Privacy

Payees

Transaction Transaction
Escrow Escrow

Transaction No privacy Transaction
m . from payment hub. '

Transaction Transaction
Escrow Escrow

Transaction Transaction

Y

Transaction
Escrow

Transaction

Transaction
Escrow

Transaction

. Bob

Claim

Claim

H(x3) =V?

H(x3) = Y?

Background: HTLC Privacy

Transaction Transaction
Escrow Escrow
Transaction Transaction
j slaim

- ()

Transaction
Escrow

Transaction
3im
D

()

Transaction
Escrow

Transaction Transaction
Claim Claim

Payees

The main idea behind TumbleBit is a protocol which
provides atomicity but is also unlinkable (i.e. private).
Think of it like Unlinkable or Private HTLCs.

Background: RSA Puzzles

® An RSA Puzzle is just a “textbook RSA encryption” of some value €:
RSA(PK, €) =z

® Only the party that knows SK can solve RSA puzzles:
RSAY(SK, z) = RSAY(SK, RSA(PK, €)) = €

RSA blinding can be used to blind RSA puzzles

- 2
Tumbler Z,
< z z* = Blind(z,)
RSA(SK,z*) = e*
et —>| ¢, = Unblind(e*)

Bob, learns the solution €, to the puzzle z,

Tumbler can not link the blinded RSA puzzle it solves z*
to any of the RSA puzzles it issued (z,, z,).

TumbleBit: Protocol Overview

Alice, I'll sell a solution to an RSA Bob, the solution € to RSA puzzle z
@ puzzle of your choice for 1 Bitcoin. allows you to claim 1 Bitcoin.

Transaction
ﬁ @ Escrowl

\\.

\-_"‘/

Tumbler P Y
i Puzzle Promise
z = RSA(PK, €) I Protocol :
¢ = Enc(€,0) - Z, C E
o 112 4 Blind(z)
4 e e e e T M M == Z* 4 T
I/ Puzzle : : :
I |
| Solver Protocol ex= RsA(sKZ*) | 1 I
: z* -I' q = Enc(X, €%*) : :
4 1 I' Y = H(X) | :
. ! ' rI Learn € get
Fair exchange: |4 | :
@) for €* | : :
|
] I :
<€ X I :
Dec(X, i I .
ikl e* : ! Unblind(€*)
! .
| : v
: Transactiqn o DEC(E, C)

= |/

4"«’ If Tumbler corrupts z, ¢, X,or q it can cheat Alice or Bob!

Transaction E - Transaction 7
1 \ ¥)

ro == == — =7
| Puzzle Promise !
E 7/ I Protocol :
Engl(e,0) L Z,C —
I(') ________ : Blind(z)
- — = e e e = = = = = * : |
I/ Puzzle nl : :
I Solver Protocol I
I i = RSA‘1(SK z*) | 1 :
;: MlajEncx, e*) || |
I : |
4 :\\ K \ H(X) : H
_) ’ Learn € get
Fair exchange: Transaction offer | : |
for €* I HX) =Yfor @ [: |
l . I
. Transaction fulfill l : I
|
' |
Dec(X, I ' _ |
X, a) e : Ly Unblind(e*)
I .
| ! v
: Transactiqn o H Dec(c, C)

= 1/

~,
;,"’ If Tumbler corrupts z, ¢, X,or q it can cheat Alice or Bob!

_ .

Transaction \ ;;d Transaction A

ﬁ) Escrowl N @ Escrow2 Bob

Tumbler M= T T T L
i Puzzle Promise
‘E RS,;(PK, €) I Protocol :

Engl€,o) L zZ, C —

— : ’ I(') ________ : Blind(z)
- ——— = = = = = == z* : |
1/ Puzzle nl / : :
't Solver Protocol I
i = RSA'Y(SK,z*) | | |
:: Enc(X, €*) : I
i I
< = H(X) ! :

. 1! , rI Learn € get

Fair eXCha’rjge' = Transaction offer | : |
@) for € I HX) =Yfor @ B : [
l . I
Transaction fulfill l I |

__

5’ Puzzle-Solver-Protocol: \i ' Puzzle-Promise-Protocol:
i Tumbler convinces Alice the preimage X | . Tumbler convinces Bob that the solution to RSA
. where Hash(X) =Y will allow her to learn €*. ' i\ puzzle z is a value € which allows him learn o.

1
1
1
/ ,’
““““““““““““““““““““““““““““““““ ’ /

TumbleBit: Protocol Overview

Alice, I'll sell a solution to an RSA Bob, the solution € to RSA puzzle z
@ puzzle of your choice for 1 Bitcoin. allows you to claim 1 Bitcoin.

Transaction
ﬁ @ Escrowl

\\.

\-_"‘/

Tumbler P Y
i Puzzle Promise
z = RSA(PK, €) I Protocol :
¢ = Enc(€,0) - Z, C E
o 112 4 Blind(z)
4 e e e e T M M == Z* 4 T
I/ Puzzle : : :
I |
| Solver Protocol ex= RsA(sKZ*) | 1 I
: z* -I' q = Enc(X, €%*) : :
4 1 I' Y = H(X) | :
. ! ' rI Learn € get
Fair exchange: |4 | :
@) for €* | : :
|
] I :
<€ X I :
Dec(X, i I .
ikl e* : ! Unblind(€*)
! .
| : v
: Transactiqn o DEC(E, C)

TumbleBit: Phases

1. Escrow Phase: All payment channels setup.

(@)
W

@

@)
™

| (e, ...

TumbleBit: Phases

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.

| TR —

Payers

Close channel
T:5, B1:5
Pay/5.QTC (o)
Cl hannel |
Pay 3 BTC oEE s (c,2),(¢,2),(c,2),...(c,2)

T:3, 82:7

o o

@%

Pay 7 BTC

o

O||lO

TumbleBit: Phases

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

Payers Payees

Close channel

T:5,B,:5

Pay/5n.QTC

Close channel

T:3, 82:7

Close channel

T:7, B3:3

Pay 7 BTC

el
NC TS

Pay 3 BTC

8

Close channel
T:8, B1:2

Close channel
T:0, Bz:10

Close channel
T:7, B3:3

)

(c,2),(c,2),(c,2),...

(c,2)

o

o

o

)

o

TumbleBit: Phases

Privacy offered the TumbleBit Payment Hub

Tumbler’s view:
(1) payer of each payment, (2) # of payments each payee received.

Unlinkability def:
All interaction graphs compatible with the tumblers view are equally likely.

— ——~—~—_# Received
@)

TumbleBit: Classic Tumbler

TumbleBit can also be a classic tumbler:

Allows users to privately move bitcoins to an unlinked fresh address.

Old Addr 1

Old Addr 2

Old Addr 3

[This is also sometimes known as a mixing service or mix. } 19

TumbleBit: Classic Tumbler

To run TumbleBit as a Classic Bitcoin Tumbler:
® Each payer just makes one payment.
e Each payee accepts only one payment.
e # of payers = # of payees.
® payer and payee pairs are the same user

Payers
Close channel Close channel
FEY 1 EVE T, B,:0 T:0, B,:1
\ A

& o

o/
Pay 1 BTC Close channel

Close channel

T:0, 82:1 T:0, Bz:1
Pay 1 BTC Close channel Close channel
T:A1, B3:0 T:0, B3:1

Provides k-anonymity:
Where k = # of payers = # of payee.

Compared to other Tumblers

/Vulnerable to

<%, CoinJoi

Sybil Attacks

DoS &\

n.

L

imited Anonymity
CoinShuffle

\

TumbleBit

_

hours

Xim

.)
Mixing takes

/ Vulnerable to bitcoin theft \

Blindcoin:

J

Coin

Intermediary
breaks

J

anonymit
_ e

21

TumbleBit: Implementation

We wrote a proof-of-concept implementation of the Classic
Tumbler:

e We are working on improving it and making it user friendly.
® Sourcecode and a development roadmap are available on

We “tumbled” 800 payments:

Our implementation is Performant (per TumbleBit payment):
e 326 KB of Bandwidth,
® Puzzle-Solver takes ~0.4 seconds to compute
e Total time depends on network latency:
No latency ~0.6 seconds.
Boston to Tokyo ~6 seconds (clear) and ~11 seconds
...(both parties use TOR) 22

Conclusion

TumbleBit provides,
private untrusted scalable payments via today’s Bitcoin

1. Private: Unlinkable or k-anonymous payments
Trustless: Tumbler can not steal or link payments.
3. Scalable (payment hub): scales Bitcoin’s transaction velocity and volume.

=

We have running code (for TumbleBit classic tumbler):

e Our code runs on Bitcoin’s mainnet blockchain.
e We have published our code on github.
e ...and we working to improve it and make TumbleBit easy and safe to use.

We are hiring a full time engineer (Boston),
N email me if interested.

Questions?

Source code + roadmap: https://github.com/BUSEC/TumbleBit

Paper: https://eprint.iacr.org/2016/575.pdf

Alice Tumbler __________ . Bob
) ,’ Puzzle-Promise \I —
— = \ Protocol /
O 6 3 BTC 3BTC ====-= r___" (c,2)
2 = »Z
£2) |))
Av | Escrow Transaction Escrow Transaction
M Z=Blind(z) —
=R .3 T En———
(E) Z »¢” RSA-Puzzle-Solver ~\
2 £ >\ Powcl e 1 BTC from A to B
s g o] I e [
v I
' M Unblind(€)=€ —p €
o = 0= Dec (c)——l
N a r €
% -% Cash-out Transaction Cash-out Transaction
<= S 1 BT
< 8 2 BTC 1 BTC | 2 BTC \S

Ask questions on twitter: @Ethan_Heilman

TumbleBit: Puzzle-Solver-Pr

| can’t tell which B’s
are real or fake.

z* Fair exchange/contingent payment for an RSA puzzle solution
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z* O.
2. Tumbler reveals €* if and only if Alice pays. H’
Tumbler

1. Makes m real puzzles:
for i in m: Di = Blind(z*, Ri) Shuffle(D1,D2 ..., Dm, F1, F2, ..., Fn) 2. 5°'_"_es/ encrypts:
...and n fake puzzles: =(B1,B2,B3, ... Bn+m) > for_| In m+?: _
forjin n: Fi= RSA(PK, Pi) €l = RSA™(SK, Bi)
gi = Enc(Xi, Si)
Yi = H(Xi)

3. Reveals fake puzzles
by sending solutions.

1Pty P 2o LT 4. Reveals Xi
5. Checks fake puzzles < (X2, X5, X11, ...) of fake puzzles.

values “H(X) = Y”
correctly computed.

r (91,Y1),(q2,Y2),(q3,Y3),...

6. A proves all real puzzles
unblind to same puzzle z*

‘ (R, R2, ... Rm) >

Transaction offer

H(X1) = Y1 AND H(X3) AND H(X4) ... for @

7. decrypts q’s
learns €* (X1, X3, X4, ...) = @

If Tumbler computes any (qi,€i,Yi) of the real puzzles correctly Alice learns €%,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

TumbleBit: Puzzle-Solver-Pr

| can’t tell which B’s
are real or fake.

z* Fair exchange/contingent payment for an RSA puzzle solution
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z* O.
2. Tumbler reveals €* if and only if Alice pays. a.
Tumbler
1. Makes m real puzzles:
for i in m: Di = Blind(z*, Ri) Shuffle(D1,D2 ..., Dm, F1, F2, ..., Fn) o B0 G i
...and n fake puzzles: = (B1,B2,B3, ... Bn+m) foriin m+n:

€i = RSA'Y(SK, Bi)
gi = Enc(Xi, Si)
Yi = H(Xi)

i< (a1 Y1) (a2 Y2) (a2 Y3)
3. Revea)”™
|M Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(2%°)

forjin n: Fi=RSA(PK, Pi)

5. Check m = # of real puzzles = 15
v;Iueic”l n = # of fake puzzles = 285
correctly\> - | D

6. A proves all real puzzles
unblind to same puzzle z*

7. decrypts q’s
learns €* (X1,X3,X4,...) I

If Tumbler computes any (qi,€i,Yi) of the real puzzles correctly Alice learns €%,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

‘ (R, R2, ... Rm) >

Transaction offer .
H(X1) = YL AND H(X3) AND H(X4) ... for @

TumbleBit: Puzzle-Promise-Protocol

At the end of this protocol: Bob should be convinced that for a (z, c):
1. The ciphertext ¢ decrypts to O under a key € i.e Dec(€,c) = O
- 2. AND the key € is the solution to the RSA-puzzle z.
t The protocol should never: allow Bob to learn a valid o (without paying).

Tuf-rriizbler

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,€,0) and let Bob check.

TumbleBit: Puzzle-Promise-Protocol

At the end of this protocol: Bob should be convinced that for a (z, c):
1. The ciphertext ¢ decrypts to O under a key € i.e Dec(€,c) = O
[] 2. AND the key € is the solution to the RSA-puzzle z.
“MEEE™ The protocol should never: allow Bob to learn a valid @ (without paying).

Turﬁb|er 1. B sends: a mix of hash&g of valid and invalid claim transactions. I
< B= H(Tl),H(@)MH(M),H@),H(T&
AN
]3' TBS,'fgn;_& S EEI This is why the protocol is hard,
0:)1 I—Igig'n(Bi) otherwise Tumbler could convince Bob -

by just sending (c,z,€,0) and let Bob check.

zi = RSAY(SK,€i), ci = Enc(€i,oi)

< T1,®, 743,76

I 3. B: reveals
I transactions.

5. B checks: invalid
€2,€3,e5 P transactions Oi are
correctly computed.

4. T Reveals: €i for I
invalid transactions. I

6. Bob and Tumbler run “quotient protocol” ensuring that:
¢——] if Bob learns €1, Bob can use that knowledge to learn €4,€6. .
(e4/€1 mod N, €6/€4 mod N)

If Tumbler computes any (€i,0i) of the valid transactions correctly Bob learns a o/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

TumbleBit: Puzzle-Promise-Protocol

At the end of this protocol: Bob should be convinced that for a (z, c):
1. The ciphertext ¢ decrypts to O under a key € i.e Dec(€,c) = O
[] 2. AND the key € is the solution to the RSA-puzzle z.
™ The protocol should never: allow Bob to learn a valid o (without paying).

(%

Turﬁbler I 1. B sends: a mix of hash&gof valid and invalid claim transactions. I
- B = H(T1),H(@)MH(MLH(@),H(T&
AN
]3' TBS_'fgn;& AR B ‘ | This is why the protocol is hard, |
or .' |n. o otherwise Tumbler could convince Bob i |t
Ci= Syf N\
zi = RS -
Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(2%°)

m = # of valid transactions = 42
n = # of invalid transactions = 42

| R

e L CITCUINIT,. IIIVUIIJ

€2,€3,e5 >| transactions oi are

4. T Reveals: €i for |
invalid transactions. I

correctly computed.

6. Bob and Tumbler run “quotient protocol” ensuring that:
¢——] if Bob learns €1, Bob can use that knowledge to learn €4,€6. R ——
(e4/€1 mod N, €6/€4 mod N)

If Tumbler computes any (€i,01i) of the valid transactions correctly Bob learns a o/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

